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The phase behavior of a large but finite Ising ferromagnet in the presence of competing surface magnetic
fields ±Hs is studied by Monte Carlo simulations and by phenomenological theory. Specifically, the geometry
of a double pyramid of height 2L is considered, such that the surface field is positive on the four upper
triangular surfaces of the bipyramid and negative on the lower ones. It is shown that the total spontaneous
magnetization vanishes �for L→�� at the temperature Tf�H�, related to the “filling transition” of a semi-infinite
pyramid, which can be well below the critical temperature of the bulk. The discontinuous vanishing of the
magnetization is accompanied by a susceptibility that diverges with a Curie-Weiss power law, when the
transition is approached from either side. A Landau theory with size-dependent critical amplitudes is proposed
to explain these observations, and confirmed by finite size scaling analysis of the simulation results. The
extension of these results to other nanosystems �gas-liquid systems, binary mixtures, etc.� is briefly discussed.
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I. INTRODUCTION

The current paradigm of attempting to develop various
kinds of nanoscopic devices requires careful consideration of
the phase behavior of nanosystems, since in nanoscopic ge-
ometries effects due to external walls or other boundaries of
the system can modify its “bulk” behavior substantially.
Qualitatively new kinds of phenomena may occur that have
not yet been studied for macroscopic bulk systems.

We demonstrate another kind of phase transition in the
present paper, which belongs to the class of interface
localization-delocalization phenomena, using the simple
Ising ferromagnet with nearest-neighbor exchange on a cubic
lattice as a generic example. Choosing a compact octahedral
shape of the system in the form of a bipyramid of height
2L, we assume that on the upper surfaces of the pyramid
�0�z�L� a positive surface magnetic field +Hs acts, while
on the lower surfaces �with −L�z�0� the field is negative
but of the same absolute strength, so that no sign of the
magnetization is overall preferred. More generally, one
might consider the case with positive and negative fields of
different strength; their difference, however, could be effec-
tively compensated by a suitably chosen bulk field such that
at low temperatures again a degeneracy with respect to the
sign of the spontaneous magnetization is possible, similar to
the case of “capillary condensation”-type phenomena in
semi-infinite thin films �1–11�. In this case one can also ex-
pect an interesting interplay between the wetting behavior of
the semi-infinite system and the phase behavior in confine-
ment, a complication that is not considered in the present
manuscript.

Such a system is then described �for L→�� by an order
parameter �the spontaneous magnetization of the Ising ferro-
magnet�, which does not remain non zero up to the critical
temperature Tcb of the bulk three-dimensional model, but
rather only up to a temperature Tf�Hs�, identical with the

�critical� temperature of the filling transition �12–30� in a
single semi-infinite pyramid. As will be discussed in this
paper, this kind of phase transition �31� in the limit L→�
can be either of first order or of second order, depending on
the value of the line tension, which describes �32–37� the
free energy excess associated with the contact line where the
interface separating oppositely oriented domains meets the
free surface �or inert wall that confines the system, respec-
tively�. Of course, as long as the linear dimension L of the
system is large but finite, finite-size rounding of this phase
transition needs to be considered, and hence we shall present
a tentative generalization of the theory of finite size scaling
�38–45� to the present situation.

A qualitative explanation of this transition is sketched in
Fig. 1. It is assumed that the surface magnetic field strength
Hs is small enough, so that for zero temperature the ground
state of the system has a uniform �positive or negative� mag-
netization, in spite of the unfavorable energy cost due to the
surfaces �or walls, respectively� where the surface magnetic
field is oppositely oriented to the direction of the spontane-
ous magnetization. As the temperature is raised, the interfa-
cial free energy � between oppositely oriented domains de-
creases faster than the excess free energy difference,
fs�Hs ,T�, of a positively oriented domain between surfaces
with ±Hs. As is well known the interfacial free energy �
vanishes at the bulk critical temperature Tcb according to a
power law �� �1−T /Tcb�2�b with the correlation length criti-
cal exponent �46,47� �b�0.63. At the temperature Tf�Hs�,
these surface free energies become equal, and hence for
T�Tf�Hs� it is energetically favorable to have a state with
two oppositely magnetized domains, separated by an inter-
face located in the basal plane of the bipyramid �Fig. 1�. Of
course, in the actual calculation of Tf�Hs� not only the sur-
face free energies � and fs�Hs ,T� �per unit area� matter, but
one must also consider the fact that the four triangular sur-
faces take a larger area �depending on the opening angle � of
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the pyramids� than the area of the interface. In this work, we
consider explicitly only the case �=45°, so that the surfaces
of the bipyramid meet at the basal plane at an angle of 90°,
but it is clear that the general features of the phenomena
described here do not depend on this particular choice. In
fact, we speculate that also the choice of planar surfaces is an
irrelevant detail, and similar behavior could be observed for
other geometries such as double cones with different surface
fields on the upper and lower portion.

The outline of this paper is as follows. In Sec. II, we
recall the basic facts about the filling transition in semi-
infinite cones, and develop a tentative phenomenological
theory for describing the transition explained in Fig. 1. Sec-
tion III describes our Monte Carlo results and interprets them
in terms of the phenomenological description of Sec. II. Fi-
nally Sec. IV contains our conclusions, and discusses briefly
the extension to phase transitions of other systems �gas-
liquid systems, binary mixtures, etc.� in related geometries.

II. THEORETICAL BACKGROUND

In this section two complementary phenomenological ap-
proaches to the phase transition in a double pyramid are de-

veloped. In subsection A we use the description of the filling
of a single cone �21�. This yields the location of the filling
transition in the limit L→� and we discuss modifications
due to the double-pyramid geometry. This approach is ex-
pected to yield a good description if the magnetization is
close to its saturation value, i.e., for Lt	1, where t denotes
the reduced distance from the filling transition. The role of
fluctuations within this context is considered in subsection B.
Then, in subsection C, we develop a phenomenological
Landau-type theory for the case that the interface fluctuates
around the basal plane. This approach is able to describe the
behavior in the ultimate vicinity of the transition, L2t
1,
and the fluctuations above the transition.

A. Phenomenological considerations in terms
of surface thermodynamics

Our phenomenological description assumes that the
theory of cone filling �21� can be directly applied to the
filling of a semi-infinite pyramid �i.e., we ignore the excess
free energy at the edges of the pyramid, where the contact
lines of the interface with two triangular pyramid surfaces
meet�. We compare the bipyramid geometry to an equivalent
situation of a semi-infinite single pyramid, and consider the
case when the interface is located at a height �0 above the
bottom corner �Fig. 2�. We write the free energy of the semi-
infinite pyramid, relative to a state with no interface, in terms
of surface and line free energies

�Fs = 4�0
2� + 8�0�line − 4�2�0

2fs�Hs� . �1�

In Eq. �1�, we have used the geometrical factors appropriate
for the opening angle �=45° �a generalization in terms of
other choices for the angle � is straightforward�, and we
have also suppressed temperature arguments throughout, in
order to simplify the notation. Actually, rather than using the
temperature, T, as a control parameter as assumed in Fig. 1,
we find it more convenient to use the strength of the surface
magnetic field Hs instead. �In the plane of variables T ,Hs the
filling transition line is described by the inverse function
Hsc�T� of the function Tf�Hs�. As long as one crosses this line
under a finite angle, it does not matter whether T or Hs is
used as a control variable�.

Since we know that at the filling transition the interface
can move infinitely far apart from the lower corner, �0→�,
we must have �F=0 for Hs=Hsc, i.e.,

FIG. 1. �Color online� Ising ferromagnet on a simple cubic lat-
tice whose surfaces form a bipyramid �left� and resulting phase
transition in the limit L→� �right�, plotting the spontaneous mag-
netization ms�T� versus temperature T. Signs �+,−� along the cross
section of the bipyramid �left upper part� or on the triangular pro-
jections of the surfaces in the top view �left lower part� refer to the
surface magnetic field, ±Hs, that acts on the spins in the surface
planes only. Note that the basal plane of the bipyramid is taken to
be the �xy� plane of the simple cubic lattice, and measuring lengths
in units of the lattice spacing, each pyramid takes L planes �with a
single spin in the pyramid top�, so the total linear dimension from
top to bottom of the bipyramid is 2L+1 �the extra lattice slice
accounts for the basal plane common to both pyramids�. For T
�Tf�Hs�, the interface between the domains with negative �↓� and
positive �↑� magnetization is located close to one of the corners
�e.g., the bottom corner, as assumed in the figure; see the magnified
view�. The local fluctuations of the interface extend over a correla-
tion range ��, as indicated by the double arrow. As the temperature
is increased towards the filling transition temperatures, T→Tf�Hs�,
the interface detaches from the corner and moves towards the mid-
plane of the bipyramid. For T�Tf�Hs� the magnetization ms then
remains zero.

FIG. 2. �Color online� Comparison of a bipyramid of height 2L
and basal plane of linear dimension 2L with a single �infinitely
large� pyramid, assuming the same positive surface field Hs at the
corresponding surfaces, and considering the situation that the inter-
face between the domains with positive �↑� and negative �↓� mag-
netization is located at the same distance �0 from the bottom corner
in both cases. An opening angle �=45° is assumed for simplicity.
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� = �2fs�Hsc� . �2�

This result agrees with the macroscopic filling condition that
the cone fills if the contact angle on a planar substrate equals
the cone angle, �. In the vicinity of Hsc the variation of
fs�Hs� with Hs is linear, fs�Hs�= fs�Hsc�+ �Hs−Hsc�fs�. As a
result, near Hs=Hsc Eq. �1� can be rewritten as

�Fs��0� = 8�0�line − 4�2�0
2�Hs − Hsc�fs�. �3�

Minimization of Eq. �3� with respect to �0 readily yields

�0 =
�line

�2�Hs − Hsc�fs�
. �4�

Since fs�Hs� is a monotonously increasing function of
Hs , fs��0 and hence the denominator of Eq. �4� is negative in
the considered region Hs�Hsc �for Hs�Hsc the pyramid is
“filled,” i.e., �0�� on this other side of the filling transi-
tion�. Of course, only non-negative solutions for �0 are
physically meaningful, and hence we require that the line
tension is negative, �line�0. The fact that critical cone filling
can only occur for negative values of the line tension has
already been stressed by Parry et al. �21�. If �line0, only a
first order filling transition is possible �i.e., at Hs=Hsc the
length �0 jumps discontinuously from �0=0 to �0=�, in our
simplified treatment�. Using Eq. �4� in Eq. �3� yields

�Fs = 2�2�line
2 1

�Hs − Hsc�fs�
. �5�

One should not worry about the fact that for Hs→Hsc this
free energy excess �Fs→−�, because �F in Eqs. �3� and �5�
is of order unity only, rather than scaling with any power of
the linear dimension of the system. For the filling transition,
the relevant free energy scale is 4�L2, if for Hs�Hsc we
have an interface of area �2L�2 in the system. The free energy
depression per unit area resulting from Eq. �5� is of order
��Hs−Hsc�L2�−1 and, hence, for �Hs−Hsc� of order L−2 the
divergence in Eq. �5� becomes problematic. Taking the limit
L→� first, and then letting Hs→Hsc obviously poses no
problem: the free energy per unit area stays 4�2fs�Hs ,T� for
Hs�Hsc.

We suggest now that in a large but finite bipyramid the
behavior of the surface free energies gets modified as sche-
matically shown in Fig. 3. For H�Hsc�L� the interface is
located at �0=L, in the basal plane of the bi-pyramid, and the
free energy is reduced by a line tension contribution, f
=4�L2+8�line� L. Note that, in general, the line tension of an
interface in the basal plane of the bi-pyramid, �line� , where
two planes �with surface fields +Hs and −Hs� meet under an
angle 2� �Fig. 2, left part�, can be expected to differ from the
line tension �line of an interface that meets a flat surface
under an angle � �Fig. 2, right part�, with a surface field +Hs
on both sides of the interface. It is the latter quantity, how-
ever, which determines the scale of the depression �Fs be-
low the leading variation 4�2L2fs�Hs�=4�L2+4�2L2fs��Hs

−Hsc�. Since properties like the total magnetization of the
bipyramid change continuously, when �0 increases from
small values to �0=L, it is assumed that the transition from
the state with broken symmetry �the interface being located

at �0 or 2L−�0, respectively� for Hs�Hsc�L� to the symmet-
ric state where �0=L is a second order transition, implying
that the two branches of the surface free energy meet at
Hs=Hsc�L� with a common tangent. In our notation �and in
Fig. 2� we have allowed for a shift of Hsc�L� due to finite size
from its asymptotic value Hsc� limL→�Hsc�L�. Of course, in
reality we must expect that for finite L there is a rounding of
the transition in addition to the shift, and hence there does
not exist any value Hsc�L� where singularities of the consid-
ered model �Figs. 1 and 2� occur for finite L, but this round-
ing of the transition can only be allowed for if statistical
fluctuations are taken into account.

If one could take the result for the free energy depression
through the formation of an interface, Eq. �5�, literally,
the resulting behavior of the surface free energies would
even be slightly more complicated then conjectured in Fig. 3.
In fact, if we consider the surface free energy for
Hs�Hsc�L� explicitly

f�Hs� = 4�L2 + 4�2L2�Hs − Hsc�fs� + �Fs,Hs � Hsc�L�
�6�

and insert Eq. �5�, we recognize that f�Hs� exhibits a maxi-
mum at

FIG. 3. �Color online� Schematic plot of the surface free ener-
gies of a large but finite bipyramid Ising system versus Hs �or t
=Hs /Hsc−1, respectively�. For L→� the surface free energy is
4�2L2fs�H ,T� for Hs�Hsc, since the contribution due to the inter-
face at height �0 above the lower corner is negligible. For Hs near
Hsc the variation of fs�H ,T� with Hs is linear. For Hs�Hsc the
surface free energy is due to the interface in the basal plane of the
bipyramid, 4�L2, independent of Hs, in the limit L→�. If large but
finite linear dimensions L are considered, the surface free energies
are reduced because of line tension contributions. For Hs�Hsc�L�,
which is characterized by �0=L �dot in the figure�, this reduction is
8�line� L �in the vicinity of Hsc the dependence of �line� on Hs can be
neglected�. For Hs�Hsc�L�, the depression �Fs of the surface free
energy relative to its asymptotic expression for L→� gradually
grows with increasing Hs, reflecting the gradual increase of �0.
Assuming that the gradual motion of �0→L can be described analo-
gous to a second-order transition in a bulk system, the free energy is
drawn to meet the branch 4�L2−8�line� L at Hsc�L� with horizontal
slope.
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Hs�L�max − Hsc =
�line

�2fs�L
, �7�

which corresponds to a value �0=L. Using this result in Eq.
�6�, we readily find f�Hs�=4�L2+8�lineL at the point marked
by a dot in Fig. 3, as Hs→Hsc

− �L�. On the other hand, ap-
proaching the transition from the other side �Hs→Hsc

+ �L��,
we have f�Hs�=4�L2+8�line� L, and there is a priori no rea-
son to assume that �line=�line� as noted above, because of the
physical distinction between the contact line on a plane and
the contact line pinned to the edge where the surface field
changes sign �cf. Fig. 2�. So one would predict that in the
surface free energy at Hsc�L� there is a jump singularity of
order L. However, as will be discussed in the next section,
thermal fluctuations are expected to smooth out this singu-
larity and, hence, fs�Hs� is a smooth nonsingular function for
all L.

B. Interfacial fluctuations at filling transitions

Here we recall results due to Parry et al. �21� on the filling
of rotationally symmetric �infinite� cones. These authors pre-
sented arguments that the dominating fluctuations of the in-
terface are the so-called “breather modes,” i.e., the interface
moves uniformly up or down. If we denote this fluctuating
height of the interface midpoint over the cone �or pyramid�
corner as � and interpret �0 of the previous subsection as its
average value, �0= 	�
, the probability distribution derived
by Parry et al. �21� for the interface position � can be rewrit-
ten as

P��� � exp�−
1

2��
2 �� − �0�2� , �8�

where the correlation length �� describing the interfacial
width due to these breather fluctuations diverges by a simple
power law

�� � �t�−��, �� =
1

2
. �9�

Although Eqs. �8� and �9� have been directly obtained for
axially symmetric cones only, Parry et al. �21� assert that
they should hold as well for the inverted pyramid-shaped
geometry considered in the right part of Fig. 2.

It is interesting to apply Eqs. �8� and �9� to such a semi-
infinite inverted pyramid for the case when �0 has reached
the value �0=L. Then Eqs. �8� and �9� imply, using �0� t−1,

	�2
 − 	�
2 = ��
2 � �t�−1 � �0 � L . �10�

This result also means, however, that the fluctuation in the
area of the interface is proportional to L as well. Since these
fluctuations of the interfacial free energy are of the same
order as the contribution of the line tension, a theory based
on balancing surface free energy differences with the line
tension alone, as sketched in the previous subsection, cannot
be expected to be quantitatively valid. Basically, one could
argue, what needs to be done is to average the free energy
function of the previous section with the Gaussian distribu-
tion resulting from Eq. �8�: the result will then be a renor-

malized effective free energy varying smoothly with Hs, as
anticipated in Fig. 3.

Equation �10� yields a justification for the assumption that
only the uniform “breather” mode needs to be taken into
account while all the nonuniform interfacial fluctuations can
be neglected. As is well known, long wavelength nonuniform
interfacial fluctuations can be modeled as capillary waves
�33,48–52� and over a length scale L these capillary waves
cause a broadening of the interfacial profile described by the
following expression for the mean square width w2

w2 = w0
2 +

kBT

4�
ln

L

B
, �11�

where w0 is a �hypothetical �53�� intrinsic width and B is a
short wavelength cutoff of the same order as w0. The loga-
rithmic variation of w2 with L in Eq. �11� results from inte-
grating the mean square amplitude 	�h�q���2
 of the Fourier
components h�q�� of the deviation h�x��=��x��− 	�
 of the local
height of the interface ��x�� from its average value 	�
,

	�h�q���2
 =
kBT

�q2 �12�

over all wave numbers q in the interval 2� /L�q�2� /B.
The dominance of the uniform “breather mode” over the

nonuniform capillary waves is not unique to the problem of
the filling transition. Also in the problem of interface
localization-delocalization transitions in thin films�5,54–59�
of thickness D a related anomalous size dependence of inter-
facial widths was observed �60�. Specifically, it was found
that for a fixed linear dimension L parallel to the competing
walls �in the “soft mode” phase �54,55� where the interface is
unbound from the walls� the mean square fluctuation of the
interface scales even quadratically with D �60�

w2 �
kBT�

�

D2

L
, D → �, L fixed, �13�

corresponding to a fluctuation of the interface as a whole in
the direction normal to the interface over a finite fraction of
the film thickness. In Eq. �13�, �−1 is a length characterizing
the exponential decay of the �short range� repulsive effective
potential acting on the interface from the wall at z=0,V�z�
�exp�−�z�+exp�−��D−z�� , z being the distance of the
mean position of the interface from the left wall. In the op-
posite limit, a linear variation of the mean square fluctuation
with D was found �60,61�

w2 = w0
2 +

kBT�D

16�
+ const, L → �, D 	 w0. �14�

For a cubic geometry D=L we note that Eqs. �13� and �14�
exhibit a smooth crossover characterized by

w2 �
kBT

�
�L, L → � , �15�

which is the same type of relation as found above in the
context of the filling transition, Eq. �10�. Unfortunately,
when the interface average position coincides with the bi-
pyramid basal plane �Fig. 2, left part�, the effective interface
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potential is not known to us, and hence we cannot quantify
the prefactor in the relation w2= 	�2
− 	�
2�L in this case.

C. A phenomenological Landau-like theory for the phase
transition of the Ising bipyramid

As discussed in the previous sections, the phase transition
sketched in Fig. 1 cannot be understood solely from a mac-
roscopic balance of surface and line free energies, but inter-
facial fluctuations must be taken into account, and the domi-
nating fluctuation that needs to be considered, is a uniform
fluctuation of the position � of the interface around its aver-
age position �0, in Fig. 2 �left part�. However, to a first ap-
proximation, �0 is related to the total magnetization per spin,
m, by

m/mb = �1 − ��0/L�3� , �16�

where mb is the bulk magnetization of an �infinite� Ising
lattice at the same temperature. Here we use simple geo-
metrical relations, noting that the volume of the total bipyra-
mid is 8L3 /3, the volume which has opposite orientation of
the magnetization is 4�0

3 /3, and we have neglected any sur-
face contributions to the magnetization, assuming that the
local magnetization is everywhere ±mb in the bipyramid,
right up to the surfaces and to the interface. We shall discuss
corrections to this approximation below.

Being interested in �m� /mb
1, it makes sense to trans-

form from �0 to �̃0=L−�0, i.e., we count the interface dis-
tance from the basal plane rather than the lower pyramid

corner, to conclude that in this limit m /mb�3�̃0 /L. Thus we
conclude that�	m
−m� /mb�3��0−�� /L, and hence Eq. �8�
can be rewritten as �in the following we take mb�1 as the
unit of the magnetization per spin�

P�m� � exp�−
L2

18��
2 �m − 	m
�2� . �17�

Remembering that ��� �t�−1/2 �Eq. �9�� this is equivalent to

P�m� � exp�− constL2�− t��m − 	m
�2� . �18�

Comparing this expression with the general fluctuation
formula �42,62�

P�m� � exp�−
V�m − 	m
�2

2kBT�
� , �19�

V=8L3 /3 being the volume of the system, we immediately
conclude that the susceptibility per spin � at the transition of
Fig. 1 satisfies a Curie Weiss law for t�0 �i.e., Hs�Hsc�

� � L/�t� . �20�

Note that Eq. �20� holds only for L2�t�	1, because only then
is Eq. �18� sharply peaked at m�	m
, and the Gaussian ap-
proximation for P�m� holds. It is also interesting to note that
the “critical amplitude” �63� �− in the power law �=�−�t�−�

is proportional to L, i.e., divergent in the thermodynamic
limit. However, this fact is trivially understood, since the
bulk magnetic field creates a Zeeman energy H	m
�8L3 /3�,
scaling with volume, while shifting the interface between the

oppositely oriented domains costs an energy proportional to
the interface area �of order L2� only.

For Hs�Hsc �i.e., t�0� we expect that the susceptibility
per spin, �, in the analogous relation where 	m
�0,

P�m� � exp�−
1

2
Vm2/�kBT��� , �21�

also scales proportional to L, because the above argument
with the Zeeman energy remains valid. Hence it is tempting
to assume that there holds a Curie-Weiss law analogous to
Eq. �20� also for t�0, and we suggest therefore that

P�m� � exp�− const L2�t�m2�, t � 0,L2�t� 	 1, �22�

in analogy with Eq. �18�. Now we also remember that for
t�0 there is a symmetry with respect to the sign of the
magnetization, so Eq. �18� for H=0 really needs to be re-
placed by an expression that is symmetric with respect to the
sign of 	m
= ±m0,

P�m� �
1

2
exp�− const L2�− t��m − m0�2�

+ exp�− const L2�− t��m + m0�2��

�
1

2
exp�− const L2�− t�

�m − m0�2�m + m0�2

4m0
2 �

for �m� � m0 and L2�t� 	 1. �23�

It then is tempting to interpret Eqs. �22� and �23� as limiting
cases of a Landau-type theory

P�m� � exp�−
8

3
L3 fL�m�

kBT
� , �24�

with an effective free energy density fL�m� �64�

fL�m� = f0 +
1

2L
rm2 +

1

4
uLm4 − Hm , �25�

where we now have added the magnetic field. Moreover, Eq.
�25� can be rewritten as

fL�m� = f0 +
r

4L
m0

2 −
r

4Lm0
2 �m − m0�2�m + m0�2 − Hm ,

�26�

and thus Eq. �26� immediately leads to Eqs. �22� and �23� if
r=r0t ,r0 being a constant. Since m0

2=−r / �LuL�, we recover a

mean-field exponent �=1/2 for the power law m0= B̂�t��, as
expected for a Landau type theory. Of course, such a mean-
field relation for m0 is consistent with the jump of the mag-
netization expected in the thermodynamic limit �Fig. 1� only

if the critical amplitude B̂ diverges as L tends to infinity.
The considerations discussed so far do not give any clue

where the basic nonlinearity responsible for deviations of
fL�m� from Gaussian behavior comes from. Disturbingly, the
t dependence of m0 �supposedly valid for m0 /mb
1� is in-
consistent with that which follows when one uses the expres-

sion �0= �̂0 / �t� ��̂0 being a critical amplitude� from Eq. �4� in
Eq. �16�. The approach of m0 /mb to its saturation value unity
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goes as m0 /mb−1� �L�t��−3. Assuming that the term uLm4

describes physical effects due to the existence of corners,
which take a fraction of 1 /V�L−3 of the volume, a plausible
assumption is �31� uL=u /L3 �=u /Ld in d dimensions�. As a
consequence, one predicts

m0 = L�r0

u
�− t�1/2. �27�

Of course, the condition m0 /mb
1 requires L2�t�
1. As
we shall see below, in this regime all singular behavior
is smeared out due to finite size rounding and, hence,
Eq. �27� is not directly observable. The same problem occurs
for the critical isotherm, which follows from Eq. �25� for
r=0, H�0,

� � fL�m�
�m

�
t,H

= uLm3 − H = u�m/L�3 − H = 0 �28�

as

m0,t=0�H� = L�H/u�1/�, � = 3, �29�

i.e., the critical amplitude of the power law m0�H��t=0

= D̂H1/� scales again proportional to L. If we generalize the
problem to hyper-bipyramidic geometry in general dimen-
sionality d, the result �±�L remains unchanged, while the

other critical amplitudes become B̂�L�d−1�/2 , D̂�Ld/3 �31�.
Finally we note that fL�m0�= f0+rm2 / �4L�= f0−L�r0t�2 / �4u�
for t�0, as expected from Fig. 3. For �t� of order 1 /L2 the
depression of fL�m� relative to f0 is only of order L−3, i.e.,
negligible on the scale of Fig. 3. Only for �t��1/L a free
energy of order 1 /L is obtained.

The concept that the dominant statistical fluctuations are
the “breather modes,” i.e., fluctuations of the uniform mag-
netization, fluctuations with a zero-dimensional phase space
�21�, is reminiscent of the behavior of Ising-like systems in
high dimensionalities, d�4, which exhibit mean-field criti-
cal behavior �65� but nevertheless for a description of finite
size rounding these variations of the uniform magnetization
need to be taken into account. In brief, the statistical me-
chanics of this latter problem is formulated �43–45� in terms
of a partition function,

Z =� dm exp�− Ldf�m�/kBT� , �30�

assuming a d-dimensional hypercubic lattice of linear dimen-
sion L with periodic boundary conditions, where �f0 is a
constant�

f�m� = f0 +
1

2
rm2 +

1

4
um4 − Hm, r = r�t,t = T/Tc − 1.

�31�

With the magnetization distribution,

PL�m� = Z−1exp�− Ldf�m�/kBT� , �32�

its moments are then calculated as

	mk
 =� mkPL�m�dm . �33�

In this problem, however, u is a constant and does not
depend on L, nor does any other L dependence appear in
f�m� as given in Eq. �31�. With a little algebra �43–45� it is
then straightforward to show that for H=0 the moments 	mk

�for k even, odd moments all vanish� scale as

	mk
 = L−kd/4M̂k�tLd/2� , �34�

M̂k being scaling functions that can be explicitly derived
from Eqs. �30�–�33�.

Here we follow exactly the same procedure, the only dif-
ference being that Eq. �31� needs to be replaced by Eq. �25�,
with uL=u /L3. Thus we obtain, writing �=m /m0 and con-
sidering H=0 for simplicity,

PL��� =

exp�−
m0

2L3

3kBT��
��2 − 1�2�

�
−�

+�

d� exp�−
m0

2L3

3kBT��
��2 − 1�2� . �35�

It is seen that this distribution depends only on a single pa-
rameter, namely,

m0
2L3

kBT��
= L2r0

u
t

L3

L/�2r0t�
=

2

u
�r0tL2�2, �36�

and hence one finds that all moments are functions of this
single parameter as well,

	���k
 = fk�tL2� , �37�

where the scaling function fk is defined in terms of Eq. �35�
by simple integrals. Since

	�m�k
 = m0
k	���k
 = � r0L2t

u
�k/2

	���k
 � m̃k�tL2� , �38�

also the scaling function m̃k is a function of the scaling vari-
able tL2 again; there is no L-dependent prefactor, unlike Eq.
�34�.

It is useful to consider the behavior right at t=0 sepa-
rately, since then �if also H=0� we have simply

PL�m� =
1

Z
exp�− 2um4

3kBT
� , �39�

since the L dependence of the volume V=8L3 /3 is canceled
by the L dependence of uL ,uL=u /L3. From Eq. �39� it is then

obvious that all moments 	�m�k
t=0= f̃ k�0� are simple con-
stants. If a magnetic field is included, we similarly conclude

	mk
 = m̃k�tL2,HL3� �40�

and in particular one finds that the zero-field susceptibility at
t=0 is finite and proportional to the volume, ��t=0��L3. At
this point we return to one—so far not really justified—key
assumption of the present treatment, namely uL=u /L3.
Equally well one could argue that the basic non linearity,
uLm4, of the effective free energy density is due to line ten-
sion effects rather than caused by the presence of pyramid or
cone corners, and hence uL=u� /L2 would result. As a conse-
quence, m0

2=r0�t�L /u�, and one would still predict a diverg-
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ing amplitude of the order parameter, m0=L1/2�r0 /u��t�1/2,
and a finite size scaling variable �Eq. �36�� m0

2L3 / �kBT���
� �tL3/2�2 instead of �tL2�2. The free energy then would be-
come fL�m�= f0− �r0t�2 /u�, i.e., for �t�L3/2 of order unity it
still would be of order L−3, as expected, since the regime
of finite size rounding corresponds to total free energy
differences in the system of order kBT. However, considering
the distribution PL�m� for t=0 we would obtain PL�m�
=Z−1exp�−�2L3 /3kBT�uLm4�=Z−1exp�−�2u� /3kBT�Lm4�, im-
plying that for t=0 the moments scale as 	�m�k
�L−k/4. As
will be demonstrated in Sec. III, such a behavior clearly con-
tradicts observation.

It is clear that the treatment presented so far is extremely
simplified, and one needs to discuss various corrections. For
the Landau theory of phase transitions in the bulk at high
dimensionalities �Eqs. �30�–�34�� one knows that nonuniform
order parameter fluctuations are the leading source of higher
order correction terms to Eq. �34� �66�. In our problem, the
analogous fluctuations to consider would be nonuniform
fluctuations of the interface. These fluctuations are correlated
in a volume ��

d in d dimensions, and the motion of the inter-
face back and forth in such a correlated volume would cause
a magnetization fluctuation of the order of mb

2��
d . Hence we

conclude that a contribution �� to the susceptibility results:

kBT�� = Ld�	m2
 − 	�m�
2� � mb
2��

d � �t�−d/2. �41�

We note that in d=3 this divergence has a stronger power
than the leading Curie-Weiss term, Eq. �20�, but it has a
critical amplitude which is of order unity rather than of order
L. In the regime �t�L2	1 the asymptotic behavior predicted
by Eq. �20� should dominate, but for �t�L2 of order unity this
correction may be non-negligible. Denoting the leading re-
sult of Eq. �20� by �0, we have in d=3

� = �0 + �� � L�t�−1 + const�t�−3/2

= L�t�−1�1 + const��t�L2�−1/2� . �42�

Thus in the region of the finite size rounding of the transi-
tion, the nonuniform fluctuations yield corrections that are of
the same order as the corrections that would result from the
scaling function m̃k�tL2� in Eq. �38�. Hence one cannot ex-
pect that moments 	�m�k
 calculated from Eq. �35� are quan-
titatively accurate, therefore, we have not bothered to work
them out in full detail. This result must be expected, of
course, because the result ��� �t�−1/2 means that for �t�L2 of
order unity �� is of order L, the whole length scale of the
Ising bipyramid.

It is also of interest to consider the generalization of Eq.
�42� to arbitrary dimensionality d, which yields

� = �0 + �� = L�t�−1�r0 + const/L�t��d/2−1�� . �43�

This result shows that for “hyper-bipyramids” in d�3 ��
indeed becomes a correction, smaller than the terms resulting
from the scaling function in Eqs. �35�–�37�. Conversely, for
d�3, the corrections in the finite size scaling limit �t�Ld−1 of
order unity are proportional to Ld�3−d�/2 and hence larger than
the leading term of order r0. This marginal role of d=3 may
indicate possible logarithmic corrections to finite size scal-
ing. For d�3 we expect a nontrivial description of finite size

effects with non-mean-field exponents. Monte Carlo studies
of the d=2 square geometry with competing edge fields �67�
corroborate this conclusion.

In addition to the effects of nonuniform interfacial fluc-
tuations, there exist also corrections due to walls, edges and
corners that invalidate the simple relation between the inter-
face height �0 and the magnetization, Eq. �16�. For example,
from the regime where in Fig. 2 a negatively oriented do-
main meets positive surface fields, we expect a correction
4�2�L2−�0

2���ms /m0� / �8L3 /3� to Eq. �16�, so that

m

mb
= 1 − ��0/L�3 − �3/�2�

�ms

mb
� 1

L
−

�0
2

L3� , �44�

�ms being a surface magnetization difference �per unit sur-
face area�. Additional corrections �of order L−2� may result
from the edges where the triangular surfaces of the pyramid
meet. Thus a phenomenological relation between y=m /mb
and x=�0 /L is

y = 1 − A0x − A1x2 − A2x3, �45�

where A0 ,A1, and A2 are phenomenological constants.
When �0 is close to L, Eq. �44� can be simplified as

m

mb
= 3�L − �0

L
− �2

�ms

mb

L − �0

L2 � , �46�

which implies that in the linear relation between
�	m
−m� /mb�4��0−�� /L used to justify Eq. �17� a correc-
tion term �of relative order �2��ms /mb� /L� enters, giving
rise to the replacement of the factor L2�t� in Eq. �18� by a
linear combination of terms L2�t� and L�t�, causing thus addi-
tional corrections to finite size scaling.

III. SIMULATION RESULTS

Qualitative evidence for the actual occurrence of the tran-
sition sketched in Fig. 1 is presented in Fig. 4, showing two
snapshots of the Ising bipyramid in the two “phases” caused
by different values of the surface field. Note that we use an
Ising nearest neighbor Hamiltonian

H = − J�
	i,j


bulk

SiSj − Js �
	i,j


surfaces

SiSj − Hs �
i

upper surfaces

Si

+ Hs �
i

lower surfaces

Si − H �
i

all spins

Si, �47�

where the exchange constant is weakened if both spins i , j
are in a surface plane, Js=J /2. One can see that for
J /kBT=0.45,Hs /J=1.00 the magnetization is still predomi-
nantly negative, as anticipated in the schematic drawing of
Fig. 2 �left part�. In the negative domain only small clusters
of positively oriented spins occur, and vice versa. For
J /kBT=0.25 and Hs /J=0.77, however, there is no majority
of either positive or negative spins, as far as one can tell this
from viewing the pyramid surfaces.

A more quantitative characterization of the transition is
provided by contour diagrams �Fig. 5�. Figure 5 shows that
the schematic view of an interface at a height �0 over the
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pyramid corner �Figs. 1 and 2� is a very crude over-
simplification of reality: rather the interface is fairly broad,
spread out over a thickness of many lattice spacings. More-
over, the interface is strongly bent and not at all horizontal.
One can also see that the interface is not hitting the external
surfaces, under a well-defined contact angle. Rather the mid-
point contour m�x ,y ,z�=0 gradually bends over tangentially
towards the external surfaces; see Fig. 5�a�. Some crowding
of contours near the external walls is always seen, implying
that the corrections discussed in Eqs. �44�–�46� will make a
substantial contribution �68�. Also in the symmetric situation
�Fig. 5�b��, where the interface is flat and not bent, and the
contour m�x ,y ,z�=0 does coincide with the basal plane, one
can see that the effective width of the interface is quite
broad. Due to this interfacial broadening, we expect that the
details of the singular shape of the system �external surfaces
with competing surface fields meet at z=0 under a sharp
angle, 2�=90° here� do not matter, and if the bipyramid
edges would be rounded away by a smoothly curved behav-
ior, we should still observe the same behavior as in the
present study as long as the radius of curvature in these
smoothly curved regions is a finite constant, independent of
L.

We next turn to a Monte Carlo test of the free energy
constructions discussed in Fig. 3. For this purpose the sur-
face free energy difference fs�Hs� is needed, and in order to

find this quantity we apply thermodynamic integration meth-
ods �10,69�, as done in our recent study of wedge filling �30�.

Writing fs+�Hs� , fs−�Hs� for the surface excess free ener-
gies of the bulk phases with positive �+� and negative �−�
magnetization and using the symmetry relation for the Ising
model fs−�Hs�= fs+�−Hs�, we find that the required surface
free energy difference can be written as fs�Hs�= fs+�Hs�
− fs+�−Hs�. Recalling the relation from surface thermody-
namics of ferromagnets �70�

Ms+�Hs� = − � � fs

�Hs
� , �48�

where Ms+�Hs� is the local magnetization per spin in the
surface plane of an Ising ferromagnet with positive magne-
tization in the bulk, subject to surface field Hs, we recognize
that the required free energy difference can be written as

fs�Hs� = �
−Hs

Hs

Ms+�Hs��dHs�. �49�

Figure 6�a� shows a plot of Ms versus Hs for the Ising
bipyramids with various linear dimensions L as used in the
present study. In principle, for an accurate estimation of
fs�Hs�, one should use not bipyramid surfaces but rather sur-
faces of large parallelepipeds �oriented with the same angle
� relative to the plane z=0 as studied here�, where effects
due to edges and corners could be avoided by using suitably
“staggered” periodic boundary conditions. Such a study has

FIG. 4. �Color online� Snapshot pictures of the state of Ising
bipyramids with L=40 and two surface fields: �a� Hs /J
=1.00,J /kBT=0.45, and �b� HS /J=0.77,J /kBT=0.25. The local
magnetization mi at the pyramid surfaces is coarse grained over
each triangle of closest neighboring spins, thus taking on the values
mi=−1,−1/3 ,1 /3 ,1 with i being the considered lattice site of the
respective surface plane.

FIG. 5. �Color online� Contour plots presenting curves of con-
stant magnetization �as shown in the key of each figure� as a func-
tion of position �z and x or y, respectively, choosing the coordinate
origin in the center of mass of the bipyramid� for L=26,kBT /J
=4,Js /J=1/2, and Hs=0.6 �a� and 0.8 �b�.
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not been attempted here, rather we work with the bipyramid
geometry throughout, but we then have to carefully consider
the finite size effects, which are indeed quite pronounced
�Figs. 6�b� and 6�c��. Here ���Hs�=�2fs�Hs�, to account for
the fact that the total surface area of the triangular facets of
the pyramid is �2�2L+1�2 in our model, while the total sur-
face area of the basal plane is �2L+1�2, measuring lengths in
units of the lattice spacing. The corresponding value of the
interface tension of a planar interface in the Ising model at
kBT /J=4,� /J=0.3924 �71�, is indicated by a dashed hori-
zontal line. In principle, we expect that �� /J near Hsc is a
straight line, which intersects � /J precisely at Hsc. In fact,
the values of ���Hs� extrapolated to the thermodynamic
limit do show such a behavior, yielding Hsc=0.76. However,
for all finite L the curves �� /J smoothly bend over,
and reach horizontal plateaus for large Hs, which are
substantially lower than � /J. In terms of Fig. 6�b�, the oc-
currence of these plateaus is understood from the fact that Ms
for sufficiently negative Hs already obeys the symmetry
Ms�Hs�=−Ms�−Hs�, because the sign of the magnetization in
the corresponding pyramid has changed when the interface
has moved towards the basal plane. For fields Hs where this
symmetry holds the integral in Eq. �49� yields vanishing fur-
ther contributions, resulting in a horizontal variation of
Fs�Hs� with Hs in this regime. Qualitatively, the behavior
seen in Fig. 6�b� closely resembles the expected behavior as
hypothetically sketched in Fig. 3. The linear extrapolation of
the saturation plateaus ��sat /J versus L−1 �inset of Fig. 6�b��
is nicely consistent with this picture, since the linearity of the
plot asserts that the depression of the plateaus indeed is a line
tension effect, and the extrapolated value ���sat /J�0.39�
agrees with � /J within the statistical error. From the slope of
the broken straight line in the inset in Fig. 6�b� we deduce
the estimate

8�line� /J = − 4.18 ± 0.16. �50�

Unfortunately, we are not aware of any estimates of �line� for
our geometry in the literature, to which our result could be
compared.

In the regime where Hs is small, so that the bipyramid has
essentially a uniform magnetization, apart from the region
close to the lower pyramid corner �cf. Fig. 5�a��, the finite
size correction to the surface free energy difference ���Hs�
varies proportional to L−2, as expected for a corner correction
�Fig. 6�c��. Unfortunately, a reliable extrapolation of ���Hs�
in the region near Hsc would require one to simulate much
larger systems than was possible for us.

We now turn to the description of the phase transition in
terms of the moments 	�m�k
 of the distribution function
PL�m� of the magnetization �Fig. 7�. Note that here and in the
following m is the magnetization per spin and not normalized
by mb. A striking fact is the common intersection point of the
	�m�
 versus Hs curves �part a� for a broad range of choices
for L, at Hsc=0.76±0.005. This value of the intersection
point is fully in accord with the estimate resulting from the
free energy intersections, obtained in Fig. 6�b�. The inset
illustrates the fact that the slope of the curves 	�m�
 vs Hs at
Hs=Hsc increases dramatically with L; in fact, the data are

FIG. 6. �Color online� �a� Local magnetization per spin, Ms, in
the surface plane �traditionally this quantity �70� is denoted as M1,
to avoid confusion with the surface excess contribution ms, to the
total magnetization �cf. Eq. �44��, plotted versus the local surface
magnetic field, using parameters kBT /J=4,Js /J=1/2, and linear
dimensions L in the range 20�L�100, as indicated. �b� Surface
free energy difference ���Hs� /J plotted vs surface magnetic field
Hs, as obtained from the data in part �a� via thermodynamic inte-
gration, Eq. �49�. The full straight line shows the result of an ex-
trapolation of Fs�H� /J to the thermodynamic limit �see part �c��.
Broken horizontal straight line marks the value �71� of the interfa-
cial tension, �, of the Ising model at kBT /J=4. The inset shows the
extrapolation of the apparent plateau values �reached at Hs=0.9� of
�� /J versus L−1. Arrow on top shows Hsc=0.76. �c� Finite size
extrapolation of the surface free energy difference ���Hs� /J plotted
vs L−2, for four different choices of Hs, as indicated. Arrow shows
the expected value of ���Hsc� /J at the phase transition.
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roughly compatible with the behavior �d	�m�
 /dHs�Hsc
�L2,

that one immediately derives from the scaling description,
Eq. �38�. Such a rapid increase of the slope �d	�m�
 /dHs�Hsc
is rather uncommon for normal second order transitions.
From the curve for L=40 it is already easy to guess the
limiting behavior, namely 	�m�
=mb�0.75 for Hs�Hsc,
while 	�m�
=0 for Hs�Hsc. Nevertheless, this jump of 	�m�

resulting in the thermodynamic limit should not be mistaken
for a standard first order transition—rather one deals here
with the limiting case of a second order transition, where the
critical amplitude diverges, and hence the critical region is
exceedingly narrow. Figure. 7 demonstrates that the suscep-
tibility develops a sharp peak of rapidly increasing height, as
L increases. As expected from the Curie-Weiss law with the
divergent critical amplitude, the curves do not settle at a
common L-independent function away from Hs=Hsc. But the
data clearly indicate a gradual growth of �L with Hs as Hsc is
approached from either side of the transition, and the width
over which this peak is rounded rapidly shrinks as L is in-
creased. There is not a convergence to a delta function sin-
gularity that would characterize a standard first order transi-
tion �40,41�.

A direct analysis of these data, not requiring any bias
from theory, examines the growth of the peak height with L,
and the scaling of the peak position Hs

max−Hsc with L �Fig.
7�c��. One nicely recognizes that these data are also compat-
ible with a transition at Hsc�0.76, and the relation �max�L�
�L3 implies that the maximum values of 	m2
− 	�m�
2 are of
order unity, as expected on the basis of Eq. �38�. Unlike first
order transitions �where also the susceptibility peak height
increases proportional to the volume� the width of the sus-
ceptibility peak does not shrink to zero for L→�.

A standard method to locate critical points for various
phase transitions is to check for intersections of the reduced
fourth order cumulant �41–43�,

UL = 1 − 	m4
/�3	m2
2� . �51�

Plotting hence UL vs Hs for various L should yield a com-
mon intersection point at Hs=Hsc. Figure 7�d� shows that this
simple recipe works here rather well again, confirming the
previous estimate Hsc�0.76. If one accepts Eq. �39� as a
description of the distribution at Hsc, one predicts for the
value of U* of the cumulant at the intersection point the
value U*=1−��5/4���1/4� / �3��3/4�2��0.2705. The arrow

FIG. 7. �Color online� �a� Plot of the absolute value 	�m�
 of the magnetization of the Ising bipyramid versus the surface magnetic field
Hs, for kBT /J=4.0,H=0,Js /J=0.5, and various linear dimensions L in the range 10�L�40, as indicated. Inset shows a log-log plot of the
slope at the common intersection point vs L. The straight line illustrates the theoretical value of the slope. �b� Plot of the susceptibility,
calculated from magnetization fluctuations as kBT�L=L3�	m2
− 	�m�
2�, as a function of the surface field Hs, including various linear
dimensions L in the range 10�L�40, as indicated. System parameters are the same as in part �a�. Note the logarithmic scale of the ordinate.
�c� Log-log plot of the susceptibility maximum, �max�L�, versus linear dimension, for the systems shown in part �b�. Broken straight line
illustrates the expected relation �max�L��L3. Inset shows the location of the maximum of �L ,Hs

max, plotted vs L−2, to illustrate the conver-
gence of Hs

max towards Hsc as L→�. �d� Cumulants UL �Eq. �51��, plotted vs Hs, for various L as shown in the figure, for the same system
parameters as used in parts �a� and �b�.
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in Fig. 7�d� shows that this value is in very good agreement
with the data. Interestingly, these data develop not only a
common intersection point, but also a shallow minimum for
Hs�Hsc. This is somewhat reminiscent of the behavior at
thermally driven first order transitions, such as occur in the
q-state Potts model in d=3 dimensions for q3, where UL is
known to exhibit a very deep minimum UL

min�−L3 �72�. So
the behavior of the cumulant is again indicative of a second
order transition that is close to a first order transition.

We now turn to a more detailed test of the finite size
scaling predictions, in particular of Eq. �38�. Figure 8 shows
scaling plots of the magnetization and the magnetization
square. Using �Hsc−Hs�L2 as scaling variables in part �a�,
both branches of the scaling functions for Hs�Hsc �upper
branch� and Hs�Hsc �lower branch� are combined in a single
plot. However, the “data collapsing” on master curves in
parts �a� and �b� is not really perfect, and some corrections to
scaling are clearly seen. However, as pointed out above �see
Eqs. �44�–�46� and the accompanying discussion�, our scal-
ing description has ignored contributions such as due to the
surface excess magnetization ms. Figure 9 shows a fit of data
for the magnetization to Eq. �45� to test the size dependence,
and thus it is shown that indeed important corrections are
present �68�.

The simulation data in Fig. 7 were extracted from an
analysis of the probability distribution PL�m� of the magne-
tization, m, in the finite bipyramid, and since PL�m� plays a
key role in our phenomenological description �Sec. II�, we
discuss PL�m� in detail now. Figure 10�a� shows that in the
phase where the interface coincides with the basal plane of
the bipyramid, PL�m� is perfectly described by the simple
Gaussian, Eq. �21�. From Fig. 7�d� we have already seen that
the fourth order cumulant rapidly tends to zero for H�Hsc as
L→�. The very good Gaussian fits of Fig. 7�a� imply that all
higher order cumulants vanish as well. Of course, this behav-
ior is plausible due to the rapid decrease of the fourth order
term uLm4 /4 in Eq. �25� as L→�, since uL�L−3. Thus, for
�Hs−Hsc�L2	1 the second moment 	m2
 shown in Fig. 8�b�
already contains the full information on the distribution.

Figure 10�b� demonstrates now the smooth change of
PL�m� from the single Gaussian to the double Gaussian when
for fixed L the strength of the surface field is varied. This
behavior is fully in accord with expectations for second order
phase transitions. For a first order transition �e.g., a first or-
der interface localization-delocalization transition has been
recently studied both for an Ising system in thin film geom-
etry with Js /J=1.5,Hs /J=0.25 �73� and for models of con-
fined polymer mixtures �59,74�� the corresponding distribu-
tion PL�m� near the transition has a pronounced three-peak
structure: two peaks have nonzero positive or negative mag-
netization, and the third peak occurs for m=0 �e.g., see Fig.
7c of Ref. �73� for an explicit example�. In contrast, here we
expect near the transition a single very flat and broad peak
�whose width should not shrink with increasing linear di-
mension L, as emphasized in Eq. �39��. Figure 11 therefore
examines the size dependence of PL�m� in the critical region,
and part �a� shows that indeed one can find for each L a field
Hsc� �L� such that PL�m� is essentially flat near m=0, and ap-
proximately the width of PL�m� stays independent of L when
L increases, while Hsc� �L�→Hsc=0.76 as L increases.

Ideally, one might have expected that Eq. �39� should hold
strictly for Hs=Hsc �i.e., t=0�. However, the small variation
of Hsc� �L� with L that is implied by Fig. 11�a� does not in-

FIG. 8. �Color online� �a� Absolute value of the magnetization
	�m�
 plotted vs the scaling variable �Hs−Hsc�L2, using the data of
Fig. 7, and Hsc=0.76 and various L as indicated in the figure. �b�
Plot of the second moment, 	m2
, vs the scaling variable �Hs

−Hsc�L2, using Hsc=0.76 and including data only for Hs�Hsc.
Various choices of L are shown as indicated. The straight line shows
the slope of the asymptotic Curie Weiss law, 	m2
� �tL2�−1.

FIG. 9. �Color online� Position of the maximum of the distribu-
tion PL�m� at Hs=0.73 plotted vs L−1, for the parameters kBT /J
=4.0 and Js /J=1/2. The bulk magnetization is mb=0.750. The nu-
merical data are fitted to Eq. �45�, and the constants A0 ,A1 ,A2 are
quoted in the figure. Inset shows the difference 1−m /mb vs L−1 on
a log-log plot.
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validate our phenomenological theory of Sec. II at all: as is
well known �38–43� for finite systems there is no unique
“pseudocritical” point, due to the finite size rounding differ-
ent criteria to locate a “pseudocritical” point for a finite sys-
tem yield results differing from each other �and from the true
location of the critical point� by amounts which are of the
same order as the rounding, i.e., t�L−2 in our case. Such an
argument would imply Hsc� �L�−Hsc�L−2 here. Unfortunately,
our simulation data are not accurate enough to check this
relation �and also a larger range of linear dimensions L than
what is available for Fig. 11�a� would be desirable�.

If a more rapid variation of Hsc� �L�−Hsc than the second
power of 1 /L results, it could be attributed to corrections to
finite size scaling, some of which were identified above �Eqs.
�44�–�46��. Despite all shortcomings that our numerical re-
sults still have, we consider Fig. 11�a� as a highlight of the
present study, since it demonstrates that in the limit L→� at
the transition point macroscopic fluctuations occur, the mag-
netization varies essentially everywhere in the region from
m=−0.5 to m= +0.5 �in a situation where the bulk magneti-
zation is mb�0.75�, because the interface can correspond-
ingly move freely up and down. Of course, viewing the

Monte Carlo simulation as a stochastic process, such inter-
face “motions” are extremely slow, and this “critical slowing
down” �75� hampers severely the statistical accuracy of our
Monte Carlo study, as expected �76,77�. Note that we have
applied single spin flip Monte Carlo algorithms here, since
the Swendsen-Wang algorithm �76,77� or related cluster al-
gorithms are not offering any advantage in our case, working
for temperatures distinctly below the bulk critical tempera-
ture Tcb and in the presence of nonzero surface fields.

Figure 11�b� shows then the magnetization distribution
PL�m� for various L at a fixed value of Hs that is definitely
below Hsc. One can see that with increasing values of L
pronounced peaks develop with a very deep minimum in
between; in fact, it was necessary to apply the so-called
“multicanonical” sampling technique �see, e.g., Refs.
�77,78�� in order to be able to sample more than 15 orders of
magnitude in probability with sufficient accuracy.

We also remark that Fig. 11�b� is of a very different char-
acter than the corresponding distribution for a bulk Ising
system for T�Tcb �78�: there, also, a deep minimum in be-
tween the peaks corresponding to the two signs of the order
parameter occurs, but it is very flat, almost horizontal, due to

FIG. 10. �Color online� �a� Probability distribution of the mag-
netization PL�m� for fields Hs�Hsc, outside the critical region, us-
ing the parameters L=20,kBT /J=4,Js /J=1/2, and Hs=0.8 or 1.2,
respectively. Curves through the data points show fits to the simple
Gaussian, as indicated in the figure. The inset shows the function
r�Hs�, obtained from such fits �for L=26� to demonstrate the change
of sign near Hsc. The data points for Hs=0.73 are taken from Fig.
11�b�. �b� Probability distribution PL�m� of the magnetization, m, of
an Ising bipyramid for L=20,kBT /J=4,Js /J=0.5, and H=0.
Curves show various surface fields Hs /J, as indicated in the key.

FIG. 11. �Color online� �a� Probability distribution PL�m�, of the
magnetization, m, of Ising bipyramids for kBT /J=4,Js /J=0.5,H
=0, and various choices of L with accompanying choices of Hs /J
for which a flat variation of PL�m� near m=0 was expected �these
choices are quoted in the figure�. Full curve shows the theoretical
variation from Eq. �39�, PL�m��exp�−am4�, with a=2u / �3kBT�
= �1/3�u /J�30.4. �b� Plot of ln�PL�m� / PL�0�� /L2 vs m, for
kBT /J=4,Js /J=0.5,H=0, at fixed Hs /J=0.73 and various L. The
quadratic part near m=0 is described by ln�PL�m� / PL�0�� /L2

=0.11m2 independent of L.
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configurations described as two phase coexistence �e.g., in a
bulk Ising hypercube with periodic boundary conditions slab
like domains occur�. Here the minimum of PL�m� near m
=0 does not correspond to a “mixed state” of the degenerate
phases �the interface being bound either to the top or to the
bottom corner of the bipyramid, respectively�, since no such
“mixed state” can exist. Rather, the minimum corresponds to
a uniform displacement of the interface from its stable posi-
tion near one of the two corners to the basal plane.

Therefore the logarithm of the distribution ln PL�m� near
m=0 is a simple parabola, as expected from Eqs. �24� and
�25�. This is demonstrated clearly because we have normal-
ized ln PL�m� such that all minima coincide. Dividing out the
predicted L2 dependence, we see that all curves near the
minimum nicely superimpose. However, it is also clear from
Fig. 11�b� that a fit to the form

ln�PL�m�/PL�0��
8L2/�3kBT�

= −
1

2
rm2 −

u

4L2m4, H = 0, �52�

which would be implied by Eqs. �24� and �25�, when uL
=u /L3 is used, is not a good representation of the data for
large m, and higher order terms �of order m6 ,m8 ,…� would
be required. Of course, this is not surprising at all, since the
saturation value of the magnetization at the considered tem-
perature is mb=0.75, and the distribution spans the range
from about m�−0.6 to about +0.6, i.e., close to the satura-
tion values of m. Of course, Eq. �52� is supposed to be valid
only for �m�
mb. If we ignore this problem, the “best fit”
values of the data in Fig. 11�b� would be −4r /3kBT
=0.11, 2u /3kBT=30. Nevertheless, it is reassuring that the
estimates for r resulting from the fits in Figs. 10 and 11
�8r / �3kBT�=0.56,0 ,0965,−0.22, for Hs=1.2,0.8,0.73, re-
spectively� yield a smooth curve r�Hs�, which has a zero
close to Hsc=0.76, though this curve is clearly not a simple
straight line over the wide range of values for Hs that is
considered here.

Now we turn, very briefly, to the behavior in nonzero bulk
magnetic field H �Fig. 12�. There are no surprises: we find
that 	m
 is a function of a scaled field HL for Hs�Hsc, and
of a scaled field HL3 for Hs=Hsc, as expected from the

theory of Sec. II �cf. Eqs. �20� and �40��. If we include in Eq.
�39� the magnetic field, PL�m��exp�−am4+8L3mH /3kBT�,
we can readily calculate m�H� at the critical point
�Hs=Hsc , t=0� as

m�H� = a−1/4b���3/4�/��1/4��1 − �b2/2��1

− ��5/4�/„3��3/4�…� + ¯ � ,

where b=8a−1/4L3H / �3kBT�. The resulting slope of m�H� vs
L3H /J ,m�H��0.043L3H /J is again in good agreement with
the numerical data in the inset of Fig. 12 and thus provides a
test that the estimate of the constant a �a�30–34, see Fig.
11�a�� is reasonable.

Finally, Fig. 13 considers the variation of the interface
distance when the interface is close to a corner, and hence
the theory of Parry et al. �21� should straightforwardly apply
�i.e., Eq. �4� should hold�. Thus we plot simply �0

−1 vs Hs to
test the resulting linear variation. Indeed one recognizes that
the data are nicely compatible with the predicted linear varia-
tion over a reasonable range of �0

−1, and the extrapolated
intersection point with the abscissa agrees well with Hsc
=0.76. Of course, we cannot expect that this relation works
for �0

−11, since the notion of an interface becomes abso-
lutely meaningless when its distance from the pyramid cor-
ner becomes of the order of a single lattice unit, or even less.
Conversely, finite size effects set in when �0�L /2. In view
of the fact that the width of the critical distribution of the
interface fluctuating around the basal plane of the bipyramid
is of the order of �m�0.5, see Fig. 11�a�, the strong finite
size effect seen in Fig. 13 is not at all unexpected.

IV. DISCUSSION

We start by summarizing the main findings of this study.
�i� The Ising ferromagnet in a geometry with free sur-

faces, where surface fields are applied such that one half of
the surface experiences a positive surface field and the other
half experiences a negative surface field �of the same abso-

FIG. 12. �Color online� Plot of the average magnetization 	m
 as
a function of the scaled field HL, for the parameters kBT /J
=4,Js /J=0.5,Hs=1.2, and three choices of L as indicated. Inset
shows 	m
 vs HL3 at Hsc=0.76.

FIG. 13. �Color online� Plot of the inverse distance, �0
−1, of the

interface from the bottom corner vs the surface magnetic field Hs.
Here �0 is obtained from an analysis of the spatial magnetization
distribution in the bipyramid �cf. Fig. 5�. Three lattice sizes are
shown, and the straight line marks the prediction �0

−1�Hsc−Hs ac-
cording to Parry et al. �21�.
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lute strength� has no total magnetization below the bulk criti-
cal temperature Tcb down to the filling transition temperature
Tf�Hs�; see Fig. 1. This happens because the boundary con-
ditions stabilize the interface, separating two domains of op-
posite orientation of the magnetization but taking equal vol-
ume. Below Tf�Hs�, the interface �in the limit L→�� has
essentially disappeared �it may be located at a finite distance
of order unity close to either the top or the bottom corner if
one specifically considers the bipyramid geometry as done in
Fig. 1�. Alternatively, this transition may be driven by varia-
tion of the strengths of the surface field Hs through its critical
value Hsc�T�, note that Hs=Hsc�T� simply is the inverse func-
tion of T=Tf�Hs� in the �T ,Hs� plane. This transition occurs
in the way described here only if the parts of the surface
where the surface field has the same sign are all adjacent to
each other. For example for a bipyramid with boundary con-
dition where the sign of the surface field alternates from one
triangular surface to the adjacent one on the same pyramid,
this condition would be violated, and no such phase transi-
tion occurs: rather one observes only a rounded phase tran-
sition near the bulk transition point �79�.

�ii� As described in Fig. 3, in the thermodynamic limit the
transition can be described in analogy with bulk first order
transitions, where an intersection of the two branches of the
free energy which describe the phases occurs. However,
here, both branches are surface free energies, scaling like the
surface area ��L2� rather than the volume ��L3�. Although in
the limit L→� the transition is characterized by a discon-
tinuous jump in the magnetization �cf. Figs. 1 and 7�a��, it
nevertheless is a second order transition, if the line tension of
the boundaries of the interface where it meets the walls �Fig.
2, right part� is negative. This negative line tension makes it
energetically favorable to stabilize already a domain of the
minority phase for Hs�Hsc with a mesoscopic linear dimen-
sion �0, whereby �0 in the limit L→� diverges continuously,
�0� �Hsc−Hs�−1. Thus in a small interval of Hs close to Hsc

in Fig. 7�a�, or in a small interval of temperature near Tf�Hs�
in Fig. 1 �right part�, the magnetization 	�m�
 of the system
varies continuously from its saturation value mb to zero. In
the thermodynamic limit, however, the width of this interval
shrinks to zero. On the other hand, this width over which the
smooth variation occurs is of the same order as the width of
the interval over which the finite size rounding of the transi-
tion occurs, namely of order L−2. Therefore the power law,
Eq. �27�, predicted by a simple Landau-like theory that ig-
nores finite size rounding, is nowhere clearly observable. In
the finite size scaling plot �Fig. 8�a�� one cannot identify a
branch with a slope 1/2 on the log-log plot on which the
curves collapse. This is prevented by the saturation of the
order parameter and, thus, the curves bend over to flat pla-
teaus. This saturation is not described by the theory we have
developed here, and it clearly violates the finite size scaling,
as is evident from Fig. 8�a�.

�iii� A particularly interesting behavior exhibits the total
susceptibility of the system. Figures. 7�b� and 8�b� imply, in
accord with our theory, that the susceptibility � shows a
Curie-Weiss-like divergence for Hs�Hsc, Eq. �20�. The re-
gion of bulk fields, where this divergence is observable,
shrinks to zero like 1/L, because the critical amplitude in Eq.

�20� varies like L. There is a remarkable asymmetry between
the behavior of the susceptibility in the regime Hs�Hsc
�where no total magnetization occurs� and the regime Hs
�Hsc, however: in the latter regime, the total magnetization
	�m�
 essentially reaches its saturation value in the interval
Hsc−Hs�1/L2, and this is the same regime over which the
Curie-Weiss-like divergence of the susceptibility is rounded
off. For �Hsc−Hs�L2	1, however, 	�m�
 is almost identical to
its saturation value, and the susceptibility converges towards
the �small� susceptibility of a bulk Ising system, independent
of size. The maximum value of the susceptibility scales like
the system volume, L3, as in a first order transition �Fig.
7�c��, but unlike the latter the shape of the susceptibility
maximum does not converge to a delta-function singularity
�Fig. 7�b��.

�iv� A very special behavior is detected for the probability
distribution of the order parameter �Figs. 10 and 11�. On a
scale of �Hsc−Hs��1/L2 the shape of this distribution
changes from a single Gaussian peak �for Hs�Hsc� to a
double peak distribution �for Hs�Hsc�, and the inverse width
r�Hs� vanishes linearly with Hs as Hsc is approached from
above �see inset of Fig. 10�a��. This transition from single to
double peak shape happens via distribution PL�m�
�exp�−am4�, with a coefficient a that is independent of L
�Fig. 11�a��. This broadness of the distribution implies that in
the limit L→� at Hs=Hsc fluctuations of the magnetization
occur which have a macroscopic, size-independent ampli-
tude. The standard statement of statistical thermodynamics,
that in the thermodynamic limit the relative magnitude of
fluctuations ���m� /mb� is negligibly small, is not at all true
here. Again the behavior is completely different from a stan-
dard first-order transition: at the latter, the system would
jump between m=0 and m=−mb and +mb, whereas at the
pathological second order transition found here the magneti-
zation can fluctuate over a finite fraction of the interval be-
tween −mb and +mb, characterized by the distribution of Fig.
11�a�. At a first order transition, we would instead have three
delta functions �at m= ±mb and m=0, respectively� as an
order parameter distribution. However, this particular behav-
ior is easily accounted for by the Landau-type theory of Sec.
II. In particular, for Hs�Hsc, the simulations confirm the
behavior In PL�L−2m2 near the minimum at m=0 �Fig.
11�b��.

�v� In the regime for Hs�Hsc, when the system is large
enough so that �m� is close to its saturation value mb, the
variation of the interface distance �0 counted from one of the
corners is found to go as �0� �Hsc−Hs�−1, as predicted by
Parry et al. �21�. When �0 becomes comparable to L /2, this
divergence is rounded off, as expected from the behavior of
PL�m�, since then a crossover from the theory of Ref. �21� to
the behavior described by our Landau-like theory occurs.
However, the detailed behavior in this crossover region is not
yet fully understood.

�vi� We now discuss the extent to which similar behavior
can be expected to be found for real systems, such as the
liquid-gas transition in a suitable cavity, where half of the
surface area has an energetic preference for the liquid �such
that “incomplete wetting” of the liquid at the wall occurs�
and the other half prefers the gas �i.e., an “incomplete dry-

MILCHEV, MÜLLER, AND BINDER PHYSICAL REVIEW E 72, 031603 �2005�

031603-14



ing” boundary condition�. In this case one neither has a pre-
cise symmetry between liquid and gas in the bulk, nor can
one expect a precise antisymmetry between the interactions
at the two types of walls. Therefore the phase transitions will
be shifted somewhat away from the chemical potential value
at which phase coexistence can occur in the bulk. A similar
smooth interpolation between “capillary condensation”-like
behavior and “interface localization-delocalization” transi-
tions has also been found for a model of a polymer blend in
a thin film geometry confined between parallel plates at
which surface fields act which do not have a particular sym-
metry �80�. It is encouraging that wetting phenomena in sys-
tems where chemically distinct substrates meet find increas-
ing theoretical �25� and experimental attention �81�. An
important constraint though is that for the fluids one has to
consider the grand-canonical ensemble where the fluid in the
cavity can exchange particles with a reservoir, and similarly
for the binary fluid in the cavity also exchanges A�B or
vice versa must be possible, due to a connection with a suit-
able reservoir. If one considers a fluid in a cavity with a fixed

total number of fluid particles, or a binary mixture in a cavity
with fixed relative concentration, this transition of Fig. 1 is
completely suppressed: this situation would correspond to an
Ising system at constant total magnetization, and hence by
construction fluctuations of the uniform magnetization then
are impossible. In Fig. 1 then the configuration with an in-
terface present in the basal plane of the bipyramid is en-
forced at all temperatures. An interesting aspect is also the
crossover between the transition studied here and the stan-
dard critical behavior near the bulk critical temperature �a
crossover from wetting to critical adsorption �82��.
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